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Abstract

We consider a bilateral-trade problem with incomplete information and
risk-averse traders; utility functions are common knowledge but reservation
values are private information. We define a Mediated Bargaining Game - a
continuous-time double auction with a hidden order book. It is the optimal
bargaining game in the sense that its ex-post Nash equilibria constitute the
Pareto-optimal frontier of the set of all ex-post Nash equilibria of all bargaining
games. In the Mediated Bargaining Game, Bayesian equilibria coincide with
ex-post Nash equilibria. The inefficiency due to incomplete information is
manifested through delay. As risk aversion of at least one agent tends to
infinity, some equilibria tend to full efficiency. Under assumptions on agents’
utilities, there is a unique equilibrium in which prices are linear in agents’ types.
Such prices are quite different from those imputed by the Nash bargaining
solution. This equilbrium has a simple closed-form expression. Our approach
is suitable for applications, such as wage bargaining between a firm and a
worker.

1 Introduction

Bargaining between two impatient traders is a fundamental problem of economics.
Since Rubinstein’s [1982] result on the alternating-offers game with perfect infor-
mation, many economists have been concerned with providing a similarly effective
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and tractable framework for settings with imperfect or incomplete information where
agents’ reservation values are private information. By the Myerson and Satterthwaite
[1983] impossibility theorem, the outcomes are then necessarily inefficient, which is
different from the perfect-information setup.

Most of the incomplete-information bargaining literature has focused on charac-
terizing Bayesian equilibria of different versions of the alternating-offers game, with
risk-neutral agents. This approach has three shortcomings. Such games have many
Bayesian equilibria, which are hard to characterize. 1 In Bayesian approaches, agents
are assumed to have precise knowledge of the distribution of each others’ reservation
values, or types. The effect of risk aversion on equilibrium contracts may matter, and
in many relevant situations agents have different levels of risk aversion. Examples of
such situations are wage bargaining between a worker and a firm, a large block-trade
between a market maker and an investor, a real-estate trade, and bilateral peace
talks. In the absence of adequate mechanism-design machinery, such contracts have
been studied in the literature, but generally without imposing incentive constraints.

In this paper, we study robust equilibria for bargaining games in environments
where agents are impatient and can be risk averse. We assume that the players’ utility
functions are common knowledge but that their reservation values are private. By
robustness we mean that both the equilibrium concept and its efficiency are robust
to traders’ beliefs. We thus require an equilibrium of such a game to be an ex-post
equilibrium, and that its outcome be no worse, in the Paretian sense, than any ex-
post equilibrium outcome of any bargaining game. We call this equilibrium efficiency
requirement ex-post constrained efficiency.

We define the Mediated Bargaining Game as a continuous-time double-auction in
which the Mediator prevents traders from seeing each other’s bids until the time of
agreement.2 The agreed price is then made public, and the trade takes place. The key
feature of the Mediated Bargaining Game is that the information flow between the
agents is minimized, so that agents recognize the surplus only upon agreement, when
the game is over. The main result of our analysis is that the Mediated Bargaining
Game is the optimal robust bargaining game.

We characterize mediated equilibria of the Mediated Bargaining Game. A medi-
ated equilibrium is an ex-post Nash equilibrium in undominated and type-monotone
strategies. We show that the set of outcomes of Mediated Equilibria under risk
neutrality is dense in the set of outcomes of ex-post constrained-efficient equilib-
ria of all dynamic bargaining games. Due to incomplete information, delay arises
endogenously as a part of every equilibrium, and delay causes the inefficiency. All
equilibrium outcomes of the Mediated Game are ex-post individually rational to both

1See Cramton [1984], Cho [1990], and Ausubel and Denekere [1992].
2A version of the Mediated Bargaining Game where the set of possible prices is finite was first

proposed by Jarque, Ponsat́ı and Sákovics [2003]. In our model the prices are not restricted.
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traders. Under risk neutrality all Mediated Equilibria have simple closed-form ex-
pressions, but this is true only for special cases of risk aversion. Nonetheless, when
agents are risk averse or discount the future at different rates, mediated equilibria
are constrained efficient. For a rich set of environments with risk aversion, there
exists a unique linear equilibrium with a simple closed form, suitable for embedding
in other models.

Under risk aversion there is risk-sharing in equilibrium, and if an agent becomes
more risk averse, the outcomes become closer to full efficiency. The effect on equi-
librium outcomes is the same if agents are more impatient or if they are more risk
averse, i.e. an external observer cannot distinguish between a more impatient and
a more risk-averse agent just by observing an equilibrium outcome. Under perfect
information, this is also a feature of the subgame-perfect Nash equilibrium in the
Rubinstein alternating-offers game.

The Mediated Bargaining Game is a decentralized game form implementing ex-
post individually rational, incentive compatible, and constrained-efficient direct rev-
elation mechanisms. Ledyard [1978] proves that if a game has an ex-post Nash
equilibrium then the corresponding direct-revelation mechanism is ex-post incentive
compatible.3 Ex-post constrained efficiency of ex-post equilibria is equivalent to the
ex-post constrained efficiency of an ex-post individually rational and incentive com-
patible direct revelation mechanism. Hence, for each mediated equilibrium, there is a
direct revelation mechanism that is ex-post constrained efficient under ex-post incen-
tive compatibility and individual rationality. Under risk neutrality, such mechanisms
can be represented as probability distributions over posted prices (Theorem 1). Since
the Mediated Bargaining Game implements all constrained-efficient mechanisms and
nothing else, it is the optimal robust bargaining game.

As a model, direct revelation mechanisms are not equivalent to the indirect Me-
diated Bargaining Game. First, to construct a specific ex-post individually-rational
and incentive-compatible mechanism, the designer has to know the agents’ utility
functions, but neither rationality nor preferences have to be common knowledge
among the agents. In the Mediated Bargaining Game, the designer does not need
to know anything about the agents, and just lets them play the game, but the pref-
erences, rationality, and the equilibrium have to be common knowledge between the
two traders. The second important difference is that the Mediated Bargaining Game
is free of a commitment problems that affect the direct revelation mechanism. Gener-
ically, direct revelation mechanisms prescribe lotteries at the ex-post stage, and the
agents can invert each lottery to figure out the type of the opposing player that
they are facing. The assumption in a direct revelation mechanism is that agents can

3A mediated equilibrium is not a dominant-strategy equilibrium of the Mediated Bargaining
Game, so that the relation to direct revelation mechanisms is not simply a consequence of the rev-
elation principle. In fact, the Mediated Bargaining Game has no equilibria in dominant strategies.
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commit to ex-post lotteries even though they can obtain something better once they
know each other’s types. But ex-post individual rationality requires that they cannot
commit to ex-post payments, which will make them better off at the interim stage.
Thus, ex-post individual rationality is inconsistent with commitment to ex-post lot-
teries. Such criticism does not apply to mediated equilibria because they specify
deterministic trade every time it occurs, and time cannot be reversed to ameliorate
the inefficiency resulting from delays.

As a final remark, we show that the set of mediated equilibria coincides with
the set of separating perfect Bayesian equilibria of the Mediated Bargaining Game.
Perfect Bayesian equilibria are outcome equivalent to Bayesian equilibria because
out-of-equilibrium deviations cannot affect the updating of beliefs. Thus, imposing a
weaker equilibrium notion and additional sequential rationality on the players does
not change the set of equilibrium outcomes of the Mediated Bargaining Game, so
that this set is robust to weaker equilibrium notions.

The Mediated Bargaining Game is the optimal robust bargaining game, and is
observed in practice. One can interpret the Mediator as an order book that is closed.
Several electronic exchanges, e.g. Nasdaq, Frankfurt, Stockholm, and others, allow
for hidden orders which are put in the book but are not observable by other traders.
The justification is that hidden orders are supposed to enhance efficiency, and to our
knowledge there is no theoretical foundation in the existing literature. Albeit a very
stylized model of exchange, our analysis of the Mediated Bargaining Game provides
a strong theoretical support for that claim. Mediation is also widely used in con-
flict resolution, and practitioners point to the fact that effective mediation requires
restricting direct information flows between the two parties.4 That is precisely the
defining feature of the Mediated Bargaining Game.

In Section 2 we review the literature. In Section 3 we give definitions of robust
bargaining games and ex-post constrained efficiency. In Section 4 we review direct
mechanisms under risk neutrality. In Section 5 we analyze the Mediated Bargaining
Game under risk neutrality. In Section 6 we extend the results to risk aversion, and
prove the existence of the unique linear mediated equilibrium. In Section 7, we show
that Bayesian equilibria of the Mediated Bargaining Game are ex-post equilibria.

2 Related Literature

Our work is related to the literature on robust mechanism design, see Hurwicz [1972],
Ledyard [1978], D’Aspremont and Gerard-Varet [1979], Neeman [2001], Chung and

4For example, Francesc Vendrell - the UN envoy to Central America, Namibia, Timor and
Afganistan - says: “I prefer to negotiate separately with each party, rather than with both parties
talking face to face.” ( El Páıs ( 30/12/01). See also Dunlop [1984].
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Ely [2003], Bergemann and Morris [2004] and Jehiel et al. [2005]. The recent litera-
ture studies ex-post implementation in common value problems, where ex-post imple-
mentation does not imply dominant-strategy direct mechanisms, which is different
from our setting. Čopič and Ponsat́ı [2005] characterize ex-post individually-rational,
incentive-compatible and constrained-efficient mechanisms for bilateral trade with
risk aversion and generalize the results of Hagerty and Rogerson [1987]. The lat-
ter establish payoff equivalence to distributions over posted prices for a subclass of
ex-post individually-rational and incentive-compatible mechanisms under risk neu-
trality.

Our work is also related to the literature on non-cooperative bargaining under in-
complete information (see Ausubel, Cramton and Denekere [2002] for a survey). The
closest are Cramton [1992] and Wang [2000]. Cramton [1992] extends the continuous-
time game of Admati and Perry [1987] to two-sided uncertainty and constructs a sep-
arating equilibrium where trade occurs, with delay, whenever gains from trade exist.
In the game of Wang [2000] there exists a class of outcome-equivalent separating ex-
post equilibria. The outcome coincides with that of the linear mediated equilibrium
under risk neutrality. In Example 8 we compare the efficiency (in ex-ante terms) of
mediated equilibria with the equilibrium in Wang [2005] and Cramton [1992]. We
show that mediated equilibria can dominate both of these, although the latter is not
robust.

Comparison to cooperative bargaining is also relevant. The allocation in the linear
mediated equilibrium coincides with the Nash bargaining solution (Nash [1950]) only
when agents have the same risk aversion. Still, in asymmetric environments the
risk sharing in the Nash bargaining solution goes in the same direction as in our
model. But the approach of cooperative bargaining theory is nevertheless quite
different. There is no incomplete information, incentives are not modeled explicitly,
and outcomes are assumed to be efficient, so that there is no obvious way to model
delay.

3 Dynamic bargaining games and robustness

The problem, preferences, and information structure. Two agents, a
seller and a buyer i = s, b, bargain over the price p ∈ [0, 1] of an indivisible good.
The seller’s cost of producing the good vs, and the buyer’s valuation of the good
vb are private information. We denote v = (vs, vb). We assume that it is common
knowledge that v is distributed according to a pdf G with a continuos density g, and
support supp(g) = [0, 1]2. We stress that common knowledge of the specific G is not
necessary.
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We assume that the agents are risk neutral, and they discount the future expo-
nentially. In particular, when an agreement to trade at price p is reached on date
t ≥ 0, the seller’s payoff upon trading at price p at t is us(vs, p, t) = e−t(p− vs) and
the buyer’s is ub(vb, p, t) = e−t(vb − p). In Section 6 we relax these assumptions.

Robust equilibrium and efficiency requirements. Given some dynamic
bargaining game form Γ, we impose that the equilibrium and efficiency notions be
robust. Therefore, in equilibrium strategies and outcomes must be independent of
beliefs, implying that the equilibrium be an ex-post equilibrium. We define the ex-
post equilibrium and the robustness notion for a general dynamic bargaining game
Γ, so that our definitions are abstract. In this Section we say nothing about the
existence of such games. In Sections 5 we construct a dynamic bargaining game with
robust equilibria that are optimal.

A dynamic bargaining game Γ is in our setup defined by the sets of traders’
strategies, contingent on their type, the set of histories for each player, given past
play of the game, and the outcome function, mapping strategy profiles into outcomes
(i.e. terminal histories). Let Ht be the set of possible histories at time t. A strategy
of player i is a mapping from his type vi, time t, and history h(t) ∈ Ht into price
bids,

pi : [0, 1]× [0,∞)×Ht → [0, 1] , i = s, b.

Each outcome is specified by a time τ(ps, pb, vs, vb) and a price at which trade occurs
at that time, p̄(ps, pb, vs, vb). Note that if the trade never happens that is equivalent
to τ(ps, pb, vs, vb) = ∞.5

We say that strategies (p∗s, p
∗
b) constitute an Ex-Post Nash equilibrium (PEQ) if

they are mutual best responses for each pair of types (vs, vb). More precisely, given
the equilibrium strategy of say the buyer, p∗b , the seller’s strategy p∗s satisfies:

p∗s = arg max
ps

e−τ(ps,p∗b ,vs,vb) (p̄(ps, p
∗
b , vs, vb)− vs) ,∀vs, vb.

Denote p∗ = (p∗s, p
∗
b), and by Ui(v; p∗) the equilibrium payoff to agent i, given strate-

gies p∗ and types v.
In a dynamic bargaining game Γ agents cannot be forced to trade at an unac-

ceptable price, so that every equilibrium outcome must be individually rational to
both agents.

The robust efficiency notion we impose is ex-post constrained efficiency 6 which

5For an extensive discussion of when games in continuous time are well-defined see Simon and
Stinchcombe [1989]. For a discussion on admissible strategies and sensible outcomes in bargaining
games with continuous-time see Sákovics[1993].

6This notion is related to ex-post incentive efficiency of direct revelation mechanisms, due to
Holmstrom and Myerson [1983]. The difference is that ex-post incentive efficiency means ex-post
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in the present context says the following. Take a dynamic bargaining game Γ and an
PEQ (p∗; Γ). We say that this PEQ is ex-post constrained efficient (PCE) if there
does not exist another pair (p̃∗; Γ′), Γ′ a dynamic bargaining game and p̃∗ an PEQ
of Γ′, such that

Ui(v; p∗) ≤ Ui(v; p̃∗),∀v ∈ [0, 1]2, i = s, b, and

Ui(v; p∗) < Ui(v; p̃∗),∀v ∈ V open ⊂ [0, 1]2, for at least one i.

We remark that a natural notion of equilibrium for dynamic games is the Perfect
Bayesian Equilibrium (PBE), which employs a notion of sequential rationality. In
general PBE need not be robust. In Section 6 we show that PBE of the dynamic
game which we analyze in this paper are in fact robust.

By the revelation principle and Ledyard [1978], for each dynamic bargaining game
Γ, and each ex-post equilibrium (p∗, Γ), there exists a direct revelation mechanism
(mechanism) m, which is ex-post incentive compatible, and such that Ui(v; p∗) =
Um

i (v),∀v ∈ [0, 1], i = s, b, where Um
i (v) is the payoff to agent i in mechanism m,

under truthful reporting.

4 Direct revelation mechanisms

In this Section we briefly review the results on ex-post incentive compatible (PIC),
ex-post individually rational (PIR), and ex-post constrained-efficient (PCE) mech-
anisms (under PIR and PIC). The reader should note that PCE is imposed at the
ex-post stage, and should not confuse this with the ex-ante or interim notions of
optimality. The reader should also note that ex-post incentive compatibility im-
plies equilibrium in dominant strategies and should not confuse that with the in-
terim incentive compatibility which implies a Bayesian equilibrium. We also remark
that PCE is weaker than either the ex-ante or interim constrained-efficiency notions
(PCE is necessary for either of these two). PCE is the only notion among the three
which is robust. For a more detailed discussion of the issues reviewed here see our
companion paper Čopič and Ponsati [2005].

We first note the well known and simple fact that under risk-neutrality each
PIRIC mechanism can be represented by a pair of functions (π, δ) : [0, 1]2 → [0, 1]2,
where π(v) is the price and δ(v) is the probability with which this price will ob-
tain; with complementary probability no trade occurs, and the agents obtain 0 util-

constrained optimality of a mechanism given Bayesian incentive compatibility. Thus, it does not
employ individual rationality, and incentive compatibility is imposed at the interim while PEQ is
equivalent to PIC of the direct revelation mechanism. We use a different name in order to keep the
distinction clear.
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ity. We remark that in an PEQ (p∗, Γ), δ(v) corresponds to the shrinking of the
surplus due to discounting, so that δ(v) = e−τ(p∗(v)). Denote by Uπ,δ

s (v′s, vb; vs) =
δ(v′s, vb)(π(v′s, vb) − vs) the payoff to the seller under a mechanism (π, δ) when the
reported types are (v′s, vb) and seller’s true type is vs. Similarly for the buyer,
Uπ,δ

b (v′s, vb; vb) = δ(v′s, vb)(vb − π(v′s, vb)). Also denote Uπ,δ
i (v) = Uπ,δ

i (vi, vj; vi), i, j ∈
{s, b}, i 6= j. PIC and PIR of a mechanism m = (π, δ) are now formulated as follows:

Uπ,δ
s (v′i, vj; vi) ≤ Uπ,δ

i (v),∀vi, v
′
i, vj, i, j ∈ {s, b}, i 6= j; (PIC)

δ(v) > 0 ⇒ vs ≤ π(v) ≤ vb,∀v. (PIR)

The ex-post constrained efficiency under individual rationality (PCE) of mechanisms
is formulated similarly as the PCE of a dynamic game. An PIRIC mechanism (π, δ)
satisfies PCE if

6 ∃(π′, δ′), PIRIC and s.t. Uπ,δ
i (v) ≤ Uπ′,δ′

i (v),∀v, i = s, b, and

Uπ,δ
i (v) < Uπ′,δ′

i (v),∀v ∈ V open
0 ⊂ [0, 1]2, for at least one i.

The following Theorem also appears in the same form in Čopič and Ponsat́ı [2005].

Theorem 1. A mechanism (π, δ) is PCE if and only if there exists a probability
distribution Fp, supp(Fp) ⊂ [0, 1], such that δ(v) = Fp(vb) − Fp(vs) and π(v) =
EFp [p | vs ≤ p ≤ vb]. Here EFp [. | .] denotes the conditional expectation w.r.t. Fp.

Proof. See Appendix A.

5 The Mediated Bargaining Game

In this Section we introduce the Mediated Bargaining Game (MBG), we define reg-
ular PEQ of the MBG, and we show that all of these are PCE. Thus, the MBG is
an optimal robust bargaining game.

The game. The MBG is a dynamic double auction in continuous-time, with a
Mediator. The Mediator is a dummy player whose only role is to receive bids, keep
them secret while they are incompatible, and to announce the agreement as soon as
it is reached. When the Mediator announces that an agreement has been reached,
trade takes place at the agreed price, and the game ends.

In the MBG, the Mediator imposes a restriction on the agents’ updating of beliefs.
In particular, the agents can only update through the passing of time, and in an
equilibrium, observable history at a time t is completely specified by t. The strategies
therefore map types and times into bids, so that we can exclude ht from the arguments
of ps and pb.

8



There are two more rules of the MBG. First, the Mediator enforces commitment,
so that the traders’ strategies have to be weakly monotone w.r.t. time t (i.e. the
seller can only decrease her bid at any moment, and the buyer can only increase it).
This is also enough to have well-defined outcomes in MBG. Time-monotonicity can
alternatively be thought of as a behavioral assumption. The second rule of the MBG
requires the agents to move in a differentiable way w.r.t. time.

R1 ps(vs, t) is (weakly) decreasing and pb(vb, t) is (weakly) increasing, with respect
to time.

R2 pi(vi, t) are differentiable with respect to time, for all t.7

R1 and R2 imply that ∂ps(vs,t)
∂t

≤ 0 and ∂pb(vb,t)
∂t

≥ 0, ∀vi ∈ [0, 1].

We will restrict attention to undominated equilibria of MBG. In particular, for each
PEQ profile p, a profile p′ constructed by adding a standstill interval [0, T ), i.e.
p′i (vi, t + T ) = pi (vi, t), is an PEQ as well, for any T < ∞. That is, as the opponent
does not concede any positive amount until T , no concession prior to T is useful.
Regardless of T , such strategy profiles p′ are weakly dominated. We say that an
PEQ is undominated if it does not have a standstill interval. We can similarly
define undominated profiles under Bayesian Equilibrium (BE) and Perfect Bayesian
Equilibrium (PBE) concepts (see Section 6 for precise definitions).

Mediated Equilibrium A Mediated Equilibrium (ME) is an PEQ of the MBG
which is strictly type-monotone, undominated, and such that if v2 > v1, there ∃t < ∞
such that p∗s(vs, t) = p∗s(vs, t).

In Appendix B we show that every Bayesian Equilibrium (BE) of the MBG has
to be weakly type monotone (see Proposition 14). Since every PEQ is clearly a BE,
this implies that all the PEQ have to be weakly type monotone. In the rest of this
Section we characterize the ME of the MBG and show that they exist. We also show
that the set of outcomes of ME is dense in the set of outcomes of PEQ of the MBG,
so that the restriction to ME is purely for analytic convenience.

Proposition 2. A strategy profile p is a ME if and only if

1. pi(vi, t), i = s, b satisfy the first order conditions

(ps(vs, t)− vs) = ∂pb(vb,t)
∂t

,

(vb − pb(vb, t)) = −∂ps(vs,t)
∂t

;
(1)

7Jarque, Ponsat́ı and Sákovics [2003] study a version of the Mediated Bargaining Game with a
finite set of possible prices. The set of Perfect Bayesian Equilibria there contains many strategy
profiles, none of them ex-post. If we drop time-continuity requirement we obtain also these equilibria
as Bayesian equilibria in which the agents use step functions - if an agent believes that the opponent
will only bid in discrete steps, then it only makes sense to bid within the same discrete set of prices.
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∀v, t, s.t. ps(vs, t) = pb(vb, t);

2. ps(0, 0) = pb(1, 0).

Proof. Let p∗ be a ME profile, and take a v ∈ [0, 1]2. We have to verify that a best
reply to a strictly type-monotone, strictly time-monotone, and differentiable strategy
is also such, and then we have to derive the first order condition. We do that for the
seller, a mirror argument works for the buyer. In an PEQ, it is clear that if a pair of
agents with types v agree at time t, then it must be that they agree with equality,
i.e.

p∗s(vs, t) = p∗b(vb, t), (2)

Otherwise either one of the agents could profitably deviate against the given type
of the opponent - to obtain all of the difference between the proposed prices. From
equation (2), we can define by the implicit function theorem, vs = vs(vb, t), and
we have ∂ps

∂vs

∂vs

∂vb
= ∂pb

∂vb
. In Proposition 14 of the Appendix B we prove that every

regular BE must be weakly type-monotone, so that ∂vs

∂vb
≥ 0. By assumption ∂pb

∂vb
> 0,

therefore it must be that ∂vs

∂vb
≥ 0 and ∂ps

∂vs
> 0. Now, given p∗b , again by (2), the seller

maximizes
max

t∈[0,∞)
e−t (p∗b(vb, t)− vs) ,

which immediately implies the first-order condition (FOC). It is also easy to check
that the second derivative of the objective function is negative so that the FOC is
indeed necessary and sufficient. The condition ps(0, 0) = pb(1, 0) follows from (2)
and strict type-monotonicity.

Theorem 3. If a strategy profile p∗ is a ME of MBG then the corresponding mecha-
nism is a lottery Fp over posted prices, with a continuous density fp, and supp(Fp) =
[0, 1]. For the converse, take a lottery Fp, cont. density fp, supp(Fp) = [0, 1]. Then
there exists a unique p∗ which is a ME of the MBG p∗, and such that Fp is the
mechanism corresponding to p∗.

Proof. We first show that (1) is equivalent to PIC. We will focus on the seller, the
proof for the buyer is identical. Let p∗ be a differentiable strictly type-monotone
profile satisfying (1). Define for each v, t̃(v) = min{t | p∗b(vb, t) = p∗s(vs, t)}. From
(1), by strict type-monotonicity of p∗, and applying the Implicit Function Theorem
we have that t̃ is well-defined. Now let π(v) = p∗s(vs, t̃(v)) = p∗s(vs, t̃(v)) so that
taking the derivative w.r.t. vs we obtain ∂π(v)

∂vs
= ∂pb

∂t
∂t̃
∂vs

. Therefore,

∂pb

∂t
=

1
∂t̃
∂vs

∂π(v)

∂vs

.
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Defining δ(v) = e−t̃(v), substituting this and the expression for ∂pb

∂t
into (1), and

multiplying by e−t̃(v) we obtain

δ(v)
∂π(v)

∂vs

= −∂δ(v)

∂vs

(π(v)− vs).

This is precisely the necessary and sufficient FOC for PIRIC mechanisms given in
Section 4, when π and δ are both differentiable. Since in a ME p∗s(0, 0) = p∗b(1, 0),
this implies that t̃(0, 1) = 0, so that (π, δ) must be a PCE mechanism, so it is
representable by some probability distribution Fp. The other properties of Fp follow
immediately. For the converse, if Fp is a continuously differentiable distribution with
supp(Fp) = [0, 1], then we can construct the equivalent representation (π, δ). Now
we can do the above substitutions in the other direction, and thus construct a unique
pair of strategies p∗ satisfying (1), so that p∗ is a ME. Thus, the solutions to (1) exist,
and implement precisely all the differentiable PCE mechanisms.

Corollary 4. The ME equilibria of MBG are PCE.

Proof. Take a ME of the MBG, (p∗; MBG). Suppose there existed a dynamic bar-
gaining game Γ and an PEQ profile (p̃∗; Γ), dominating (p∗; MBG). Now let m be the
mechanism corresponding to (p∗; MBG), and let m̃ be the mechanism corresponding
to (p̃∗; Γ). Since (p̃∗; Γ) dominated (p∗; MBG), it must be that m̃ dominates m,
which is a contradiction by Theorem 1 and Proposition 3.

We remark that Theorem 3 implies that the set of outcomes of ME is dense
in the set of outcomes of PEQ of the MBG. The proof is quite simple. Take an
PEQ of the MBG, and the associated PIRIC mechanism, which is representable as
a distribution Fp over posted prices by Theorem 1. Then there exists a sequence
of continuously differentiable distributions converging to Fp point-wise (on [0, 1]),
and the outcomes of the mechanisms converge point-wise (in the type space) to the
outcomes under Fp. By Theorem 3, for each continuously-differentiable distribution
over posted prices there is an ME of the MBG implementing that distribution. For
an example of this procedure see Example 8.

In the next example we show that there is a unique ME which is linear in agents’
types and the allocation is consistent with the Nash solution for all draws of types
(and thus with the limit of the allocations in the Rubinstein bargaining game, as the
time between the offers goes to 0). Note that in the present set-up with incomplete
information, the delay occurs almost surely (i.e. except when vs = 0 and vb = 1).
We will show in the next Section that a unique linear ME exists under more general
circumstances.
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Example 5. There is a unique Nash - solution consistent ME. It is given by the
following type-contingent strategy profile:

ps (vs, t) = min

{
1, vs +

e−t

2

}
,

pb (vb, t) = max

{
0, vb −

e−t

2

}
.

The Nash - solution prescribes π(v) = vb+vb

2
. Taking a uniform distribution over

posted prices in [0, 1] yields the mechanism π(v) = vb+vs
2

, δ(v) = max {vb − vs, 0} .

Checking that (1) holds is a straightforward computation. It is also easy to check
that no other positive density over [0, 1] can sustain π(v) = vb+vb

2
.

We remark that our model admits an interpretation as the limit of a game of
alternating moves à la Rubinstein [1982], when the length of the period goes to zero
and proposals are submitted to the Mediator. Example 5 describes the unique ME
profile consistent with such interpretation, since agreement at vb+vb

2
prevails uniquely

at subgames where types have been revealed (See Binmore, Rubinstein and Wolinsky
[1986]). However, note that this linear equilibrium outcome only coincides with the
Nash solution when agents are risk neutral or they have the same risk aversion, see
Proposition 9 in Section 6 and the subsequent comment.

Example 6. In this example we construct two ME in non-linear strategies. In the
first one the strategies can be explicitly computed. The second one is symmetric,
but the strategies can’t be computed in closed form. Take a lottery over posted
prices given by a pdf fp(x) = 2x, x ∈ [0, 1]. Note that fp is differentiable and
strictly positive, so that the corresponding strategies of the MBG will satisfy all the
conditions for a ME. To construct the strategies proceed as follows. First,

δ(v) =

∫ vb

vs

fp(τ)dτ = v2
b − v2

s , and

π(v) = Efp [p | p ∈ [vs, vb]] =
1

v2
b − v2

s

∫ vb

vs

τfp(τ)dτ =
2

3

v2
b + vsvb + v2

s

vb + vs

.

Since δ(v) = e−t, where t is the time of agreement between types vs and vb, we get
ṽb(vs, t) =

√
e−t + v2

s , where ṽb(vs, t) is the type of buyer who agrees with the seller
vs at time t. Noting that ps(vs, t) = π (vs, ṽb(vs, t)) we obtain

ps(vs, t) =
2
(
e−t + 2v2

s + vs

√
e−t + v2

s

)
3
(
vs +

√
e−t + v2

s

) .

12



Similarly, we could compute the strategy of the buyer.

For the second example consider fp(x) = 6x(1−x). Then π(v) =
2(v3

b−v3
s)− 3

2
(v4

b−v4
s)

3(v2
b−v2

s)−2(v3
b−v3

s)

and τ(v) = − ln δ(v), where δ(v) = F (vb) − F (vs) = (3v2
b − 2v3

b ) − (3v2
s − 2v3

s).
Thus, the strategy of the buyer is pb(vs, t) = π(vb, χ(vb, t)) where χ(vb, t)) solves
3v2

b − 2v3
b − e−t = 3χ2(vb, t)− 2χ3(vb, t), and similarly for the seller.

Next, we provide a simple example of an PEQ which is not a ME.

Example 7. Let p∗ ∈ [0, 1], and consider the following strategies of the traders.
The seller’s types vs ≤ p∗ commit to always demanding p∗, and the types vs > p∗

commit to always demanding 1. Similarly, the buyer’s types vb ≥ p∗ always bid p∗,
and vb < p∗ always bid 0. It is trivial to check that this is an PEQ of the MBG,
and it is clearly not a ME. The direct-revelation mechanism corresponding to this
PEQ is a degenerate distribution Fp (by virtue of Theorem 1) with point mass at
p∗ ∈ [0, 1].

Using this logic, and the representation of Theorem 1, the reader can construct
more contrived examples at will. That is, take some distribution Fp which is not
continuous w.r.t. the Lebesque measure, and there exists an PEQ (which is not a
ME) of the MBG, such that the direct mechanism corresponding to that PEQ is the
given Fp.

Finally, we present a standard example of welfare analysis in terms of ex-ante
constrained efficiency. We again stress that PCE is necessary for ex-ante constrained
efficiency. Thus, it is enough to look for optimal mechanisms within the class of
probability distributions over posted prices. Moreover, under risk-neutrality, the ex-
ante optimal mechanism is a deterministic posted price (i.e. a point-mass at the
ex-ante optimal posted price). By the previous example, the corresponding PEQ is
not a ME. (In contrast, under risk aversion the ex-ante optimal PEQ is generically
a ME, see Example 11 of Section 6, and Čopič and Ponsat́ı [2005].)

Example 8. Let vb and vs be iid, uniform on [0, 1]. For simplicity we find the ex-
ante constrained-efficient mechanism that maximizes the sum of expected utilities.
In this case it is quite obvious that the only candidate is by symmetry a posted price
p∗ = 1

2
(i.e. a degenerate distribution over posted prices with a point-mass at 1

2
).

The welfare under this mechanism is∫ 1
2

0

∫ 1

1
2

(
1

2
− vs) + (vb −

1

2
)dvbdvs =

1

8
.

From the previous Example we know that there is an PEQ of MBG corresponding to
this mechanism, but this PEQ is not an ME. On the other hand, it is straightforward
that for each continuously differentiable Fp with full support, there is an ME of MBG
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which implements that Fp. Therefore, there exists a sequence of ME, approximating
the outcome under p∗ = 1

2
(point-wise in the type space) - take for instance fn =

knx
n(1 − x)n, n = 1, 2, ..., and kn is chosen so that fn integrates to 1. Thus, the

outcome under p∗ is a limit point of the set of ME outcomes. The welfare under the
linear ME is 1

12
, and the welfare under the ME corresponding to fp(x) = 6(1−x)x is

1
10

. For comparison, in this same environment, Cramton [1992] computes a symmetric
stationary separating PBE where expected benefits equal to 3

32
, so that the ex-ante

ranking of welfare in these equilibria is 1
8

> 1
10

> 3
32

> 1
12

( the optimal robust PEQ
� symmetric non-linear ME of Example 6 � Cramton’s PBE � the linear ME). Note
that the PBE in Cramton[1992] is not an PEQ (thus it is not robust). Also note that
when agents are risk-averse, the linear ME is ex-ante more efficient than the most
efficient posted price - see the continuation of this example, Example 11 of Section
6.

6 Risk aversion and unequal discount rates.

In this Section, we discuss the MBG in a slightly richer model. The agents’ static
preferences display constant relative-risk aversion (CRRA), i.e. us(vs, p) = (p −
vs)

γs , ub(vb, p) = (vb − p)γb , where γi ∈ (0, 1], i = s, b. The agents are allowed to
discount the future differently, so that time preference of i is given by ρi ≥ 1 - agent
i discounts according to e−ρit, i = s, b. The restriction that ρi ≥ 1 is without loss
of generality since all that matters are relative rates of discounting. Parameters γ
and ρ are common knowledge. We will show that risk-aversion and time preference
act as substitutes, so that behaviorally, an agent that is more impatient acts as if
he were more risk-averse. In particular, this is true in a static direct mechanism,
so that the mechanism has to be adjusted for risk-aversion and impatience - even
though the game is static. The point is that it matters that a direct mechanism is a
reduced form of a dynamic game.

One could consider a richer model, where each agent has some concave utility
function and some discounting criterion, and the results would not change substan-
tially. We limit ourselves to the present setup mostly for the sake of tractability and
also because the present case exhausts the environments where MBG admits ME
in linear strategies. It is worth noting that in a dynamic game, for agents to dis-
play preferences that are consistent in the inter-temporal sense, we have to restrict
the agents instantaneous utility functions to display constant relative-risk aversion
(CRRA) (See Fishburn and Rubinstein [1982]). Nonetheless, redoing the present
exercise under other behavioral assumptions may be interesting.

We first derive the FOC for a ME in this environment (the argument is identical
to the argument in the Proof of Proposition 2 above). So let p∗ be a ME profile.

14



Now, given p∗b , the seller considers the problem

max
t∈[0,∞)

e−ρst (p∗b(vb, t)− vs)
γs ,

which yields the first order condition (similarly for the buyer)

(p∗b(vb, t)− vs) =
γs

ρs

∂p∗b(vb, t)

∂t
. (3)

Observe that it is impossible to distinguish the first order condition for agents
that are risk averse from the first order condition for impatient agents. In particular,
in the direct mechanism, we need to consider γ′i = γi

ρi
as the risk-aversion parameter

of agent i.
Consider first the case when ρs = ρb = ρ, so that γ′i = γi

ρ
, δv = e−ρt̃(v), and

π(v) = p∗b(vb, t̃(v)) = p∗s(vs, t̃(v)), where again t̃(v) = min{t | p∗b(vb, t) = p∗s(vs, t), to
obtain

(π(v)− vs)
∂δ(v)

∂vs

= −γ′sδ(v)
∂π(v)

∂vs

. (4)

By differentiability of the profile p∗ both δ and π are differentiable, and (4) is precisely
the PIRIC condition for differentiable mechanisms when γ′ are the risk aversion
parameters, which is easy to check along the lines of Section 4.

When γ′i 6= 1 for at least one i there is no representation of PIRIC mechanisms in
terms of distributions over posted prices as in Theorem 1. Still, for each mechanism
m = (δ, π), satisfying (4), we can construct by the above substitutions exactly one
strategy profile p∗ satisfying the necessary and sufficient conditions (3) for a ME.
Thus, the analog to Theorem 3 holds. For a more detailed treatment of PIRIC
mechanisms under risk aversion see Čopič and Ponsati [2005], where we also prove
that the mechanisms described by the equation (4) are PCE. 8

Since δ(v) = e−ρt̃(v), each trader perceives the deterministic trade at price π(v)
and time t̃(v) exactly the same as instantaneous trade at price π(v) with probability
δ(v). The price is distorted due to risk-sharing, and the probability may be affected
by impatience as well. Notice that we could also reparametrize time to τ = ρt, and
under this new time-scale there would be no distortion of perceived probability (i.e.,
agents getting older faster or being more impatient is formally equivalent).

Similarly, when ρs 6= ρb what matters is the γ′i = γi

ρi
, i = s, b, and Equation 4 still

describes the PIRIC condition for the direct mechanisms. Therefore, the difference

8The main problem is that in a non-linear environment there are PIRIC mechanisms that cannot
be represented as binary lotteries (since an agent is no longer indifferent between the lottery and
its mean, both on and off the equilibrium path). In Čopič and Ponsati [2005] we prove that the
mechanisms that are binary lotteries are PCE.
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of the relative impatience also has an effect on pricing, as well as on the probability
of trade. Again, even in the static set-up of direct mechanisms we have to take into
account the impatience, and not only the risk-aversion of the agents. Behaviorally,
more impatient agents act as if they were more risk-averse. Naturally, now there
doesn’t exist a re-scaling of time units that would work for both traders. See also
Example 10 at the end of this Section.

For the rest of this Section we limit ourselves to the unique mechanism (and ME
of the MBG) where pricing is linear in agents’ types. We remark that in environ-
ments where agents’ risk attitudes are not CRRA or they don’t discount the future
exponentially, no linear pricing mechanism exists (see Čopič and Ponsat́ı [2005]).

Proposition 9. Given the environment described by (γ, ρ), there exists a unique
solution (δ, π) to (4) such that δ(v) is linear in v and δ(0, 1) = 1. More precisely,

π(v) =

√
γ′s√

γ′s +
√

γ′b
vb +

√
γ′b√

γ′s +
√

γ′b
vs, δ(v) = (vb − vs)

√
γ′sγ′b , vb ≥ vs. (5)

Proof. Let π(v) = αvs + (1− α)vb, and insert this into (4). This gives

∂ log δ(v)

∂vs

= − γ′sα

1− α

1

vb − vs

,

∂ log δ(v)

∂vb

=
γ′b(1− α)

α

1

vb − vs

.

By integrating the first equation we obtain log δ(v) = γ′sα
1−α

log(vb − vs) + Ks(vb), and

from the second we obtain log δ(v) =
γ′b(1−α)

α
log(vb − vs) + Kb(vs), where Ks(vb)

and Kb(vs) are integration constants. But then it must be that Ks = Kb = const.

(determined from δ(0, 1) = 1) and
γ′b(1−α)

α
= γ′sα

1−α
. Therefore α is uniquely determined.

Observe that pricing under the linear mechanism is different from the Nash-
solution pricing, which is γ′s

γ′s+γ′b
vb+

γ′b
γ′s+γ′b

vs, and is still attainable as the limit of SPNE

of the Rubinstein alternating offers game, when vs and vb are known. This difference
is not surprising since the contraction independence property that is required in the
(generalized) Nash solutions, and implied by equilibrium conditions in the Rubinstein
game, is clearly not equivalent to the incentive constraints. However, it is remarkable
that risk-sharing goes in the same direction for both allocations: the more risk averse
agent obtains less surplus. Note also that in both models (the present one and the
Rubinstein alternating-offers model) the risk-sharing and impatience have an effect
on pricing which goes in the same direction: the more impatient agent gets less, and
the more risk-averse agent gets less. We conclude this Section with two examples.
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Example 10. Let γs

ρs
= γ′s = γb

ρb
= γ′b = γ′, so that the unique linear mechanism is

given by π(v) = 1
2
(v1 + v2), δ(v) = (v2 − v1)

γ′ . The strategies of the agents in the
appropriate ME of the MBG are given by

p∗s(vs, t) = vs +
e−γ′t

2
, p∗b(vb, t) = vb −

e−γ′t

2
.

Thus, there is a two parametric family of environments where the utility outcome is
invariant, and it is the same regardless of whether each agent is impatient or risk-
averse. We remark that while in the static direct mechanism sense we have to adjust
for dynamic time preference, in the dynamic setting we have to adjust for the static
risk-aversion, even though at each time the outcome is deterministic.

In the last example we show that when agents are risk-averse the ex-ante optimal
(under a utilitarian social welfare function) PEQ of the MBG is a ME. Computing
the ex-ante optimal mechanism is a bit complicated (and can in general only be done
numerically), and we refer an interested reader to Čopič and Ponsat́ı [2005].

Example 11. Let γs = γb = γ, γ ∈ (0, 1] and ρs = ρb = 1, and as before, let the
social welfare be given by us + ub. Also, let vb and vs be iid, uniform on [0, 1]. Then,
by symmetry, the most ex-ante efficient posted price is p∗ = 1

2
. The ex-ante social

welfare under p∗, as a function of risk-aversion γ is

W p(γ) =
1

2(γ + 1)

(
1

2

)γ+1

,

and the social welfare under the linear ME is

1

2(γ + 1)(2γ + 1)

(
1

2

)γ

.

These two expressions are equal when γ = 1
2
. For more risk-averse traders (i.e. γ < 1

2
)

social gains are higher under the linear ME. In fact, the linear ME approaches ex-post
efficiency as the traders’ risk aversion goes to infinity.

7 Separating PBE are ME

We now show that every separating Perfect Bayesian equilibrium (PBE) of the MBG
must be a ME. We note that in the MBG, the off-equilibrium deviations are unob-
servable so that the set of outcomes of PBE and the set of outcomes of BE coincide.
In Appendix B we show that all BE must be weakly type monotone (see Proposition
??).
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Beliefs. Recall from Section 2 that it is common knowledge that types are
drawn from some distribution with support [0, 1]2. Presently we must assume that
the specific pdf G is common knowledge. Agent i updates her beliefs over the dis-
tribution of the opponent’s types over time. As described in Section 4, the histories
depend only on t. Thus, given a strategy profile p, the beliefs of a player about the
opponent are updated only as a function of time. We denote by Gj (vj|vi, t; p) the
distribution of the belief of agent i of type vi about agent j at time t, conditional
on no agreement until time t. By gj (vj|vi, t; p) we denote the density of Gj, when-
ever it exists. Finally, we denote by Hj (vi, t; p) the mass of types of player j with
whom agent i has agreed with by time t. We will economize the notation and omit
parameters vi and p whenever that is unambiguous. Note that if the strategies of
both players are differentiable with respect to both parameters, and these partial
derivatives are non-zero, the beliefs will be differentiable with respect to time.

Bayes and Perfect Bayes-Nash equilibrium. Denote by EUi (vi; p, G)
the expected payoff of player i of type vi, when agents play according to strategy
profile p and types are distributed according to G. Let Gj (vi) denote the conditional
distribution of j’s types. Thus,

EUi (vi; p, G) =

1∫
0

ui (p̄i (p, vi, vj) , vi) e−τ(p,vi,vj)dGj (vi) ,

or alternatively

EUi (vi; p, G) =

∫
t∈[0,∞)

ui (pi (vi, t) , vi) e−tdHj (vi, t) ,

where both of these integrals have to be understood as Lebesgue integrals.
Denote by Πi the set of strategies for player i, and by Π = Πs × Πb the set

of strategy profiles. A strategy profile p = (pi, pj) ∈ Π constitutes a Bayes Nash
equilibrium if and only if

EUi (vi; p, G) ≥ EUi (vi; p
′
i, pj, G) , ∀p′i ∈ Πi,

for all vi ∈ [0, 1], i = s, b, j 6= i.
A careful definition of the PBE in our setting requires specifying agents’ ex-

pected utility in every subgame, which in our setup means at every time t. Let
EUi (vi, t; p, G) denote the expected payoff to player i of type vi in the subgame
starting at t, when agents play strategies p (note that p, vi, and t also specify the
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history observed by agent i):

EUi (vi, t; p, G) =

∫
τ∈[t,∞)

ui (pi (vi, τ) , vi) e−τdHj (vi, τ)

A strategy profile p ∈ Π constitutes a Perfect Bayesian equilibrium if

EUi (vi, t; p, G) ≥ EUi (vi, t; p
′
i, pj, G) ,

∀p′i ∈ Πi s.t. p′i (vi, t
′) = pi (vi, t

′) for all t′ ≤ t,

for all t ≥ 0, for all vi ∈ [0, 1], i = s, b, j 6= i. As we noted earlier, BE and PBE are
outcome-equivalent in the MBG.

We impose the following regularity condition and restrict attention to BE in
regular strategies. Note that a BE in regular strategies is a BE of the MBG which
we show in Corollary 19, in the Appendix B.

R3 We say that a strategy is regular if ∂pi(vi,t)
∂vi

is continuous ∀t ∈ [0,∞) and
limt→∞ pi (vi, t) is a left-continuous function of vi, for all vi ∈ [0, 1].

SEP We say that a regular strategy is separating if ∂pi(vi,t)
∂vi

6= 0, ∀ t ∈ [0,∞) and
∀vi ∈ (0, 1).

The regularity condition R3 imposes a pattern of behavior that rules out dramatic
changes when types change only marginally, which is a natural requirement since
types and dates take values in a continuum. The second part of R3 is roughly an
indifference breaking rule: if an agent of some type is at the horizon indifferent
between two concessions to the opponent, she will concede more. In Lemma 15 in
the Appendix B we show that this condition is enough to assure the continuity of the
demands with respect to types at the time horizon and that in a regular equilibrium
the agents’ bids asymptotically approach the reservation values.

With the main theorem of this Section we wrap up our paper.

Theorem 12. All regular and separating PBE (and thus BE) of the MBG are ME.

The sketch of the proof goes roughly as follows. First, we show that a differential
first order condition for a regular BE is well defined. Then we show that the strategies
resulting from this first order condition must be belief independent so that a BE is
an PEQ. The intuition behind this is that a separating equilibrium is fully revealing,
i.e. for each proposal and each date the seller will know exactly the valuation of the
opponent with whom she agrees at that proposal and date. Thus, once the agreement
occurs the agents know each other’s types, and since this is common knowledge ex-
ante, they must play best-replies against the strategy of each type of the other player.
For details see Appendix B.
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Appendix A.

Proof of Theorem 1.

We show that a mechanism is PIRIC if and only if it can be represented as a distri-
bution, not necessarily with mass 1, over posted prices. The theorem then follows,
since only distributions with mass 1, i.e. probability distributions over posted prices
can be PCE. The proofs presented here are a bit denser, for a more comprehensive
version see Čopič and Ponsat́ı [2005].

First, take a distribution Fp over posted prices. The simple form of this mecha-
nism, m = (π, δ), is given by δ(v) = max {Fp(vb)− Fp(vs), 0}, π(v) = EFp [ω | ω ∈ [vs, vb]].
Clearly, m is PIRIC, since distributions over posted prices are PIRIC (the draw of
the price is independent of traders’ reports so that reporting truthfully is a dominant
strategy, PIR is enforced by definition).

To prove the converse take a mechanism m = (π, δ) satisfying PIRIC. We
have to show that PIRIC implies that π and δ can be represented (as claimed)
by some Fp. It is enough to show that there exists a monotonic Fp such that
δ(v) = max {Fp(vb)− Fp(vs), 0}. From PIR and PIC, it easily follows (see for in-
stance Theorem 1 in Hagerty and Rogerson [1987], our δ corresponds to their p) that
δ has to satisfy

δ(vs, vs) =
1

vb − vs

∫ vb

vs

δ(τ, vb) + δ(vs, τ)dτ, ∀(vs, vb) ∈ [0, 1]2, (6)

and δ(vs, vb) is bounded, increasing in vs, decreasing in vb, and non-negative for
(vs, vb) ∈ [0, 1]2. The proof now follows from the following theorem. This Theorem
also appears in Čopič [2005] and Čopič and Ponsat́ı [2005] with the same proof. Here
we include the proof for reader’s convenience.

Theorem 13. Let a function δ(vs, vb) be bounded, increasing in vs, decreasing in
vb, and non-negative, and satisfy (6) for all (vs, vb) ∈ [0, 1]2. Then there exists a
monotonically increasing function δ̃ : [0, 1] → [0, 1], such that δ(vs, vb) = δ̃(vb) −
δ̃(vs),∀vb ≥ vs, and δ(vs, vb) = 0∀vb < vs.

Proof. We prove the claim in a few steps. To understand the logic it is best to
think of δ̃(.) as a distribution, which induces a measure µ̃. We know that δ̃(.) is
continuous if and only if µ̃ is continuous with respect to the Lebesgue measure, and
that in general, µ̃ can be decomposed into µ̃l + µ̃o, where µ̃l is continuous w.r.t.
the Lebesgue measure, and µ̃o is orthogonal w.r.t. the Lebesgue measure (i.e. the
jumps in δ̃(.)). Moreover, δ̃(.) is continuous if and only if δ(vs, vb) is continuous
in each of the two dimensions (i.e. vs and vb). In Case 1, we treat the problem

20



when δ(vs, vb) is continuous. In Case 2, we treat the general problem when δ(vs, vb)
can be discontinuous. If δ(vs, vb) is not continuous in each dimension the set of
discontinuities of δ(vs, vb) could be very complex. Then, the fact that δ(vs, vb) can
be represented by δ̃(.) implies that the discontinuities of δ(vs, vb) have a very specific
structure. That is, if for a fixed vs, δ(vs, τ) is discontinuous at some τ̄ ≥ vs, then
δ(v′s, τ) is discontinuous at τ̄ for all v′1 < τ̄ (Step 2.1.), and δ(τ, vb) is discontinuous
at τ̄ for all vb > τ̄ (Step 2.2.).

Case 1. Let δ(vs, τ) and δ(τ, vb) be continuous in τ , for every (vs, vb) ∈ [0, 1]2.
We define φ(vs, vb, t) = δ(vs, t)+δ(t, vb)−δ(vs, vb), and we prove that φ(vs, vb, t) =

0,∀t ∈ [vs, vb]. Note that φ is continuous in each of its arguments, in particular it
is continuous in t. We proceed as follows. In Step 1.1. we show that there exists a
t̄ ∈ (vs, vb) s.t. φ(vs, vb, t̄) = 0. In Step 1.2. we show that ∂φ(vs,vb,t)

∂t
= 0 everywhere

by showing that the derivative of φ(vs, vb, t) w.r.t. t from the left is equal to that
derivative from the right everywhere (and both are equal to 0). From the definition
of φ it is clear that its derivative from the left w.r.t. t will be equal to 0 if and only
if the derivative from the left of f(vs, t) w.r.t. t is equal the derivative from the left
of f(t, vb) w.r.t. t, which is precisely what we show in Step 1.2. Similarly for the
derivative from the right. Thus, φ is differentiable, its derivative is 0, and it is equal
to 0 at some point by Step 1.1. - then φ must be equal to 0 everywhere. While Step
1.1. is straightforward, Step 1.2. involves some calculus.

Step 1.1. There exists a t̄ ∈ (vs, vb) s.t. φ(vs, vb, t̄) = 0.

Proof. Now (6) can be written as

0 =
1

vb − vs

∫ vb

vs

φ(vs, vb, τ)dτ.

By the mean value theorem (MVT), there exists a t̄ ∈ (vs, vb), s.t. 1
vb−vs

∫ vb

vs
φ(vs, vb, τ)dτ =

φ(vs, vb, t̄), which concludes the proof of Step 1.1.

Step 1.2. φ(vs, vb, t) is differentiable in t and ∂φ(vs,vb,t)
∂t

= 0, for all t ∈ (vs, vb).

Proof. Denote by

∂+δ(vs, t)

∂t
= lim

ε→0,ε>0

δ(vs, t + ε)− δ(vs, t)

ε

the derivative from the right of δ(vs, t) w.r.t. t. Similarly, let ∂−δ(vs,t)
∂t

denote the
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derivative from the left. We will show that for every t ∈ (vs, vb),

∂+φ(vs, vb, t)

∂t
=

∂−φ(vs, vb, t)

∂t
= 0.

We will do that by showing that ∂+δ(vs,t)
∂t

= −∂+δ(t,vb)
∂t

and ∂−δ(vs,t)
∂t

= −∂−δ(t,vb)
∂t

, for all
t ∈ (vs, vb). Note that the left and the right-derivatives of δ(vs, t) and δ(t, vb) w.r.t.
t exist for all t since δ is continuous and monotonic.

We first show that

∂+δ(vs, t)

∂t
=

∂δ+(v′s, t)

∂t
,∀v′s, vs < t. (7)

To see this, we write by definition,

∂+δ(vs, t)

∂t
= lim

ε→0,ε>0

1

ε
(δ(vs, t + ε)− δ(v1, t)) .

We now use (6) and compute

δ(vs, t + ε)− δ(vs, t) =

∫ t+ε

vs

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ −
∫ t

vs

δ(vs, τ) + δ(τ, t)

t− vs

dτ

=

∫ t+ε

t

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ +

∫ t

vs

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

− δ(vs, τ) + δ(τ, t)

t− vs

dτ

=

∫ t+ε

t

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ +

∫ t

vs

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

− δ(vs, τ) + δ(τ, t)

t− vs

dτ

=

∫ t+ε

t

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ +

∫ t

vs

−ε(δ(vs, τ) + δ(τ, t))

(t + ε− vs)(t− vs)
+

δ(τ, t + ε)− δ(τ, t)

t + ε− vs

dτ

=

∫ t+ε

t

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ − εδ(vs, t)

t + ε− vs

+

∫ t

vs

δ(τ, t + ε)− δ(τ, t)

t + ε− vs

dτ

From this last expression we can see that limε→0,ε>0
1
ε
(δ(vs, t + ε)− δ(vs, t)) = 1

t+ε−vs

∫ t

vs

∂+δ(τ,t)
∂vb

dτ ,
since

lim
ε→0,ε>0

1

ε

∫ t+ε

t

δ(vs, τ) + δ(τ, t + ε)

t + ε− vs

dτ − δ(vs, t)

t + ε− vs

= 0,

by the MVT.

This implies that indeed (7) holds. Similarly, we obtain ∂+δ(t,vb)
∂t

=
∂δ+(t,v′b)

∂t
,∀v′b, vb >

t.

Now take a monotonic sequence εn, n = 1, ...,∞, s.t. limn→∞ εn = 0, and let v′b,n =
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t + εn. By above, we know that for each n,

lim
l→∞,l≥n

δ(t + εl, v
′
b,n)− δ(t, v′b,n)

εl

=
∂+δ(t, v′b,n)

∂t
=

∂+δ(t, vb)

∂t
.

Then, by the Cauchy diagonalization theorem, it is also true that

lim
n→∞

δ(t + εn, v
′
b,n)− δ(t, v′b,n)

εn

=
∂+δ(t, vb)

∂t
. (8)

Next, since δ(t, t) = 0, and also applying (7), we have for εn sufficiently small (i.e. n
large enough),

δ(t, v′b,n) = δ(t, t + εn) = δ(t, t) +
∂+δ(t, t)

∂vb

εn + O(ε2) =
∂+δ(vs, t)

∂vb

εn + O(ε2
n).

Note that ∂+δ(t,t)
∂vb

is understood as limvb→t,vb>t
∂+δ(t,vb)

∂vb
. We insert this into (8), also

noting that δ(t + εn, v
′
b,n) = δ(t + εn, t + εn) = 0, to obtain

∂+δ(t, vb)

∂t
= lim

n→∞

δ(t + εn, v
′
b,n)− δ(t, v′b,n)

εn

= lim
n→∞

−∂+δ(vs,t)
∂vb

εn + O(ε2
n)

εn

= −∂+δ(vs, t)

∂vb

.

Thus we have shown that at every t ∈ (vs, vb),
∂+δ(t,vb)

∂t
= −∂+δ(vs,t)

∂vb
, which implies

that ∂+φ(vs,vb,t)
∂t

exists and is equal to 0. Similarly, we show that ∂−φ(vs,vb,t)
∂t

exists and
is equal to 0, which proves that φ(vb, vb, t) is differentiable w.r.t. t. This concludes
the proof of Step 1.2, and thus the proof of Case 1.

Case 2. The general case. We will complete the proof of this case by showing that
the δ(vs, vb) can only be discontinuous in a way which still admits a representation by
some δ̃(.). We proceed in 2 steps, both involve applying the Monotone Convergence
Theorem (MCT), and some tedious calculus. The outline of these steps is described
in the introductory outline of the proof.

Step 2.1. If ∃vs ∈ [0, 1], and τ̄ > vs s.t. δ(vs, τ̄+)− δ(vs, τ̄−) = ∆s(vs, τ̄) > 0, then
δ(v′b, τ̄+)− δ(v′s, τ̄−) = ∆s(vs, τ̄) > 0, ∀v′s < τ̄ .

Proof. We write

δ(vs, τ̄+) = lim
ε→0

1

τ̄ + ε− vs

∫ τ̄+ε

vs

δ(vs, τ) + δ(τ, τ̄ + ε)dτ,
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δ(vs, τ̄−) = lim
ε→0

1

τ̄ − ε− vs

∫ τ̄−ε

vs

δ(vs, τ) + δ(τ, τ̄ − ε)dτ,

and since

lim
ε→0

1

τ̄ + ε− vs

= lim
ε→0

1

τ̄ − ε− vs

=
1

τ̄ − vs

,

we have

∆s(vs, τ̄) =
1

τ̄ − vs

[
lim
ε→0

∫ τ̄+ε

τ̄−ε

δ(vs, τ)dτ + lim
ε→0

∫ τ̄+ε

vs

δ(τ, τ̄ + ε)dτ −
∫ τ̄−ε

vs

δ(τ, τ̄ − ε)dτ

]
.

(9)
Now

lim
ε→0

∫ τ̄+ε

τ̄−ε

δ(v1, τ)dτ = lim
ε→0

∫ 1

vs

1(τ̄−ε,τ̄+ε)δ(vs, τ)dτ = 0,

by the (MCT). Similarly, we apply the (MCT) to the other part of (9), so that

lim
ε→0

∫ τ̄+ε

vs

δ(τ, τ̄+ε)dτ−
∫ τ̄−ε

vs

δ(τ, τ̄−ε)dτ = lim
ε→0

∫ 1

vs

1(vs,τ̄+ε)δ(τ, τ̄+ε)−1(vs,τ̄+ε)δ(τ, τ̄+ε)dτ

=

∫
[vs,τ̄)

δ(τ, τ̄+)− δ(τ, τ̄−)dτ.

Therefore,

∆s(vs, τ̄) =
1

τ̄ − vs

∫
[vs,τ̄)

δ(τ, τ̄+)− δ(τ, τ̄−)dτ =
1

τ̄ − vs

∫
[vs,τ̄)

∆1(τ, τ̄)dτ. (10)

The claim now follows for vs < v̄s < τ̄ . This concludes the proof of Step 2.1.

Step 2.2. If ∃vs ∈ [0, 1], and τ̄ > vs s.t. δ(vs, τ̄+)−δ(vs, τ̄−) = ∆ > 0, then ∃vb > τ̄

s.t. δ(τ̄−, vb)− δ(τ̄+, vb) = ∆.

Proof. First observe that since δ(0, τ) is monotonic, there exists a v̄b such that δ(0, τ)
is continuous for τ ∈ (τ̄ , v̄b]. By Step 2, δ(vs, τ) is continuous for τ ∈ (τ̄ , v̄2],∀vs < v̄b.
We can proceed as in Step 2 to obtain for each vb,

∆b(vb, τ̄) =
1

vb − τ̄

[
lim
ε→0

∫ vb

τ−ε

δ(τ̄ − ε, τ)dτ −
∫ vb

τ+ε

δ(τ̄ + ε, τ)dτ

]
.

Next,

lim
ε→0

∫ vb

τ−ε

δ(τ̄−ε, τ)dτ−
∫ vb

τ+ε

δ(τ̄+ε, τ)dτ = lim
ε→0

∫ vb

τ+ε

δ(τ̄−ε, τ)−δ(τ̄+ε, τ)dτ+

∫ τ+ε

τ−ε

δ(τ̄−ε, τ)dτ
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= lim
ε→0

∫ vb

τ+ε

δ(τ̄ − ε, τ)− δ(τ̄ + ε, τ)dτ =

∫
(τ,vb]

lim
ε→0

δ(τ̄ − ε, τ)− δ(τ̄ + ε, τ)dτ,

where the second equality follows by MCT, and the third one by the bounded con-
vergence theorem. Thus, for every vb,

∆b(vb, τ̄) =
1

vb − τ̄

∫
(τ,vb]

lim
ε→0

δ(τ̄ − ε, τ)− δ(τ̄ + ε, τ).

For each k = 1, ...,∞, by continuity and monotonicity of δ(τ̄ + 1
k
, τ), and since

δ(τ̄ + 1
k
, τ̄ + 1

k
) = 0, there exists a v

(k)
b > τ̄ + 1

k
, such that δ(τ̄ + 1

k
, v

(k)
b ) < 1

k
. On the

other hand, δ(τ̄ − 1
k
, v

(k)
b ) ≥ ∆, so that

∆b(v
(k)
b , τ̄) > ∆− 1

k
,

which by Step 2.1. implies that ∆b(vb, τ̄) ≥ ∆. By a symmetric argument, it must
be that ∆ ≥ ∆b(v2, τ̄). This concludes the proof of Step 2.2.

Now we can wrap up the proof of the Theorem. By Step 2.1., the set where δ(0, τ) is
continuous is a countable union of open intervals, denote this by V = ∪∞l=1(v

(l−1), v(l)),
where liml→∞ v(l) = 1. By Step 2.2, V is also the set where δ(τ, 1) is continuous. By
Step 2.1., δ(vs, vb) is continuous for vs, vb ∈ (v(l−1), v(l)), so that on (v(l−1), v(l)) the
Lemma holds by Case 1. By Steps 2.1. and 2.2. we can sum separately over jumps
and over points of continuity, which concludes the proof of the theorem.

Appendix B.

Proposition 14. Weak Type Monotonicity: In every BE, ∂pi(vi,t)
∂vi

≥ 0, for all
times t ∈ (0,∞) and types vi ∈ [0, 1], which satisfy the condition that Hj (vi, t) is
strictly increasing at t.

Proof. Fix the buyer strategy at some pb (., .). Denote by Hb(vs, t; ps) the mass of
buyer’s types with whom vs enters in agreement until time t if she plays the strategy
ps (., .). Observe that at any t, s.t. ∃vb with ps (vs, t) = pb (vb, t), Hb(vs, t; ps) is
strictly increasing if and only if ps (vs, .) is strictly decreasing or pb (vb, .) is strictly
increasing in t. This follows from continuity of ps (., .) and pb (., .) w.r.t. v. Moreover,
Hb(vs, t; ps) has a jump at t if and only if ∃v′b, v′′b s.t. ps (vs, t) = pb (vb, t) for all
vb ∈ (v′′b , v

′
b).

We have to show that ps (vs, t) ≥ ps (v′s, t) for any vs ≥ v′s and any t s.t.
Hb(vs, t; ps) is strictly increasing at t (at any vs, where the condition in the statement
of the lemma is satisfied, Hb(vs, t; ps) is strictly increasing, and it can have a jump).
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We proceed by contradiction. Assume there are vs > v̂s and t̂ s.t. ps(vs, t̂) <

ps(v̂s, t̂) and Hb(vs, t̂; ps) is strictly increasing at t̂. Denote by

t0 = inf
{
t|Hb(vs, t; ps) > 0, t < t̂, and ps (vs, t) < ps (v̂s, t) for all τ ∈ (t, t′)

}
,

t1 = min
{
t|t > t̂, ps (vs, t) = ps (v̂s, t)

}
.

In other words, t0 is the largest time until which the demands of vs and v̂s are
monotonic, and t1 is the first time after t0 at which these demands are equal. First,
by continuity of ps (vs, .) and ps(v̂s, .) it is clear that t0 < t̂ < t1. Moreover, t1 < ∞
since by the previous lemma, limt→∞ ps (vs, t) = vs > v̂s = limt→∞ ps(v̂s, t), hence, by
continuity there exists a t̄ < ∞ s.t. ps (vs, t) > ps(v̂s, t) for all t ≥ t̄. Since Hb(vs, t̂; ps)
is strictly increasing at t̂, it is also clear that Hb(vs, t0; ps) < Hb(vs, t1; ps).

If some seller type bids lower at time t she will have agreed with a larger mass of
the buyer’s types. In other words, ps (vs, t) ≤ ps(v̂s, t) ⇒ Hb(vs, t; ps) ≥ Hb(v̂s, t; ps)
for all t and all vs and v̂s, which follows from the monotonicity of ps (., .) and
pb (., .) w.r.t. t. Applying this twice at t0 and t1, we get Hb(vs, t0; ps) = Hb(v̂s, t0; ps)
and that Hb(vs, t1; ps) = Hb(v̂s, t1; ps). By construction, we have ps (vs, t) < ps(v̂s, t)
for all t ∈ (t0, t1). This implies that Hb(vs, t; ps) ≥ Hb(v̂s, t; ps) for all t ∈ (t0, t1).

In equilibrium, ps (vs, .) is the optimal strategy for type vs, and ps(v̂s, .) is optimal
for type v̂s on the interval (t0, t1). In particular (from now on we omit subindexes and
write ps (vs, t) = p(t) , ps(v̂s, t) = p̂(t), Hb(vs, t; ps) = H (t) and Hb(v̂s, t; ps) = Ĥ (t))∫ t1

t0

e−t (p (t)− vs) dH (t) ≥
∫ t1

t0

e−t (p̂ (t)− vs) dH (t) (11)

and ∫ t1

t0

e−t (p̂ (t)− v̂s) dĤ (t) ≥
∫ t1

t0

e−t (p (t)− v̂s) dĤ (t) . (12)

Subtracting these two inequalities, we obtain∫ t1

t0

e−tdH (t) ≤
∫ t1

t0

e−tdĤ (t) .

Integrate by parts to get
∫ t1

t0
e−tdH (t) = H (t1) e−t1−H (t0) e−t0 +

∫ t1
t0

e−tH (t) dt, and

similarly for the right hand side. Now we use H (t0) = Ĥ (t0) and H (t1) = Ĥ (t1),
to obtain ∫ t1

t0

e−tH (t) dt ≤
∫ t1

t0

e−t
b Ĥ (t) dt.

But since H (t) ≥ Ĥ (t) for all t ∈ (t0, t1) the last inequality implies that it must
in fact be H (t) = Ĥ (t) for almost all t ∈ (t0, t1). Now take for example (11), and
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rewrite it into ∫ t1

t0

e−t (p (t)− p̂ (t)) dH (t) ≥ 0.

But p̂ (t) > p (t) for t ∈ (t0, t1) , which implies that∫ t1

t0

e−t (p (t)− p̂ (t)) dH (t) < 0,

which is a contradiction.

Lemma 15. Total concession at infinity: In a regular PBE,
limt→∞ pi (vi, t) = vi for all vi ∈ [0, 1] .

Proof. Denote Pi (vi) = limt→∞ pi (vi, t). The proof is divided into three steps. In
Step 1 we show that Ps (1) = 1 (which holds trivially) and the continuity at 1 imply
that Ps (0) = 0. In Step 2 we show that Ps (.) is a continuous function, hence it
attains all values in the interval [0, 1]. Finally, in Step 3 we show that the claim is
true for the seller. An analogous proof works for the buyer.

Step 1: Ps (0) = 0. Suppose this isn’t the case, i.e. Ps (0) = K > 0 in equilib-
rium. Denote by ps (0, t) such equilibrium strategy for the seller, and by pb (vb, t) the
equilibrium strategy of the buyer of type vb. By individual rationality we have that
Pb (0) = 0. Also by individual rationality, we have that Pb (vb) is bounded above, i.e.
Pb (vb) ≤ vb. Since Pb (vb) ≥ 0, these imply that Pb (vb) is continuous at point vb = 0.
From continuity of Pb around vb = 0 we get that there is a positive mass of types
vb ∈ [0, 1] for which Pb (vb) < K. But then the seller of type 0 could improve her
expected payoff by playing ps until some large time t′, and then lowering her demand
to 0, according to some strategy p′s. To see this, notice that ps and pb are continuous
and for all vb, ps (0, t) is non-increasing and pb (vb, t) is non-decreasing in t. Thus the
support of gb (vb|t) is shrinking as time elapses. When t is very large, the support of
gb (vb|t) will be very close to the ex-post belief when no agreement has been reached.
Hence t′ is given as the moment when the expected continuation payoff of playing
ps, conditional on vb ≥ K, is lower than the expected continuation payoff of playing
p′s, conditional on vb > 0. This establishes the contradiction. The same argument
shows that Ps (vs) is continuous in a neighbourhood of the point vs = 0.

Step 2. Assume thus that Ps (vs) is discontinuous at v̄s, i.e. Ps (v̄s) = l̂ and
limvs↘v̄s = l̄, where l̄ > l̂. Then there must exist an v̄b s.t. Pb (v̄b) = l̄, and
limvb↗v̄b

Pb (vb) = l̂ (same argument as in Step 1, left-continuity of Ps and right-
continuity of Pb). Take a v̂s > v̄s. By continuity of ps in t, there exists an Ms s.t.

ps (v̄s, t) − l̂ < ε for all t ≥ Ms. Also, notice that ps (v̂s, t) ≥ l̄. Now fix ε = l̄−l̂
4

> 0

and take a t ≥ Ms. Then at t, ps (v̄s, t) < l̂ + ε while ps (v̂s, t) ≥ l̄ for all v̂s > v̄s,
contradicting the continuity of ps in vs. This proves that Ps (vs) has to be right-
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continuous. By assumption, Ps (vs) is left-continuous, 9 hence it is continuous. In
step 1 we proved that Ps (1) = 1 and Ps (0) = 0, so by Rolle’s theorem it attains all
values between 0 and 1.

Step 3: Ps (vs) = vs for all vs ∈ [0, 1]. Take an vs ∈ (0, 1). By steps 1 and 2, Ps

takes all the values in the interval [0, 1] and is continuous (thus measurable), strictly
positive on (0, 1]. Thus we can define the measure µs

µs (V ) =

∫
V

Ps (v) dm(v) for each mesaurable V ⊂ [0, 1],

where m (.) denotes the usual Lebesgue measure. By strict positivity, continuity,
and boundedness of Ps (vs), µs is an equivalent measure to m. Now suppose that
Ps (vs) > vs. By equivalence of µs to m there exists a positive mass of types vb s.t.
pb (vb) ∈ (vs, Ps (vs)). To see this define B = {vb|pb (vb) ∈ (vs, Ps (vs))} . Since µs

and m are equivalent, m (B) > 0. Now repeat the same argument as in Step 1 to
get a contradiction. Hence indeed Ps (vs) = vs.

Recall that the entry time tEi (vi) is the first time when vi could agree with some
type of player j, tEi (vi) = min {t | ṽj (vi, t) 6= ∅}. It is easy to see that at tEi (vi) the
demand of type vi must be compatible exactly with that of the weakest type of the
opponent.

Lemma 16. Initial proposal and entry time: In an undominated regular BE
ps(vs, t

E
s (vs)) = pb(1, t

E
s (vs)) and pb(vb, t

E
b (vb)) = ps(0, t

E
b (vb)), for all vi ∈ [0, 1].

Proof. Denote by γi (vi) the starting point of the bids of type vi: γi (vi) = limt↘0 pi (vi, t).
We will prove that γs(0) = γb(1), which immediately proves the Lemma. In an equi-
librium the type vs = 0 at time 0 demands a share that will give her a positive
probability of agreement in at least a very short time - otherwise each type of every
agent would know that there was some dead delay at the start where the only thing
that would happen would be that agents would lower their demands up to the point
where the minimal-cost-seller and the maximal-valuation-buyer could agree, violating
that the BE is undominated. On the other hand, it cannot be that she bids a price
which meets the bid of some buyer of type v0

b < 1 - meaning that γs (0) = γb(v
0
b ).

This follows from the price sharing rule in case that bids are more than compatible,
since then the type vs = 0 could profitably deviate by starting with a bid that meets

9Type v̄s is at t = ∞ indifferent between demanding l̂ and l̄; the former doesn’t improve her
probability of reaching an agreement since the mass of opposing types with bids between l̄ and l̂
is 0. However, by an argument similar to the proof of Step 1, we can argue, that she doesn’t lose
anything by bidding l̂, which gives us left-continuity of Ps. Left-continuity of Ps is thus essentially
an assumption on how agents resolve their indifference at the horizon.
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type vb = 1. Then she would “rip off” all the excess agreement profits by lowering
her bid very rapidly to γb(v

0
b ). By making her move fast enough it is clear that such

deviation could be profitable.

Thus for all sellers except the minimal-cost-type it is in equilibrium optimal to
wait with a high bid for a while. Symmetrically for the buyers. It means that there
will necessarily be delays with probability 1.

We remark that in each undominated regular BE tEi (vi) < ∞ if and only if
vs < 1, vb > 0. Otherwise the strategy of vi would be strictly dominated.

We now write down the dynamic optimization problem. In equilibrium, agents
maximize payoffs, given the type-contingent strategies of the other player. Thus,
agents are picking optimal functions pi(vi, ·), i = s, b, determining how bids change
over time.

An important step in the proof of proposition 17 below is to show that for every
(vi, t) ∈ [0, 1]× [tEi (vi) ,∞),ṽj (vi, t) is a function (and not a correspondence), defined
by

pj(ṽj (vi, t) , t) = pi(vi, t). (13)

This is a consequence of the assumption that the opponent plays a strictly type-
monotone strategy, and the implicit function theorem.

Proposition 17. Optimization Program: If the strategy of agent j is regular and
separating, then the best reply of agent i of type vi solves the following optimization
program

Maxpi(vi,·)∈Πi

∫
[tEi (vi),∞)

e−tui(pi(vi, t), si)gj(ṽj (vi, t))
∂ṽj (vi, t)

∂t
dt,

s.t. (13) and tEi (vi) defined by ṽb

(
vs, t

E
s (vs)

)
= 1 or ṽs

(
vb, t

E
b (vb)

)
= 0.

Proof. Consider the seller and fix her type to be vs. When entering into negotiations
at tEs (vs), she decides her optimal concession plan ps (vs, t) , t > tEs (vs), in order to
maximize her expected discounted future payoff. Denote by Hb (t) the probability
of seller vs reaching agreement up to time t (we omit the parameter vs in Hb (t; vs)).
The seller is solving the following program

Maxps(vs,·)∈Πs

∫
[tEs (vs),∞)

e−t(ps(vs, t)− vs)dHb (t)

But the possibility of reaching an agreement at some t > tEs (vs) is exactly the
possibility that the seller’s bid will at t meet the bid of some type of the buyer.
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For each t ≥ tEs (vs), recall that ṽb (vs, t) is the type of buyer with whom vs reaches
agreement at moment t. Thus ṽb (vs, t) is implicitly defined from the relation

pb(ṽb (vs, t) , t) = ps(vs, t).

Type monotonicity implies that at every instant there will be at most one type
reaching agreement with each type of the other agent. Thus, by definition of tEi
ṽb

(
vs, t

E
s (vs)

)
= 1, and by Lemma 15 limt→∞ ṽb (vs, t) = vs. Taking the derivative

with respect to t, we can express

∂ṽb (vs, t)

∂t
=

∂ps(vs,t)
∂t

∂pb(ṽb(vs,t),t)
∂vb

.

By assumption, ∂pi

∂t
are both finite, ∂ps

∂t
≤ 0 and ∂pb

∂t
≥ 0. Hence type monotonicity,

and the implicit function theorem imply that, that for each t ≥ tEi (si), ṽb (vs, t) is a

well defined differentiable function of time, with 0 ≤
∣∣∣∂ṽb(vs,t)

∂t

∣∣∣ < ∞. In other words,

at every t ≥ tEs (vs) there exists exactly one type ṽb (vs, t) of the buyer, with whom
vs would reach agreement at that moment. These facts have two consequences.
First, the probability of reaching an agreement by t, Hb (t), has no mass points
because the distribution of types of the buyer has no mass points. Second, the
marginal increase in Hb (t), dHb (t), is equal to the marginal increase of the mass
of buyer’s types that the seller would agree with by moment t. Also, the seller
knows that before tEs (vs) her bids were unrealistic, so she cannot update her beliefs
until that moment. Since ṽb is differentiable with respect to time, the beliefs are
updated continuously and differentiably from tEs (vs) on. In other words, we have
established that at tEs (vs) the belief of the seller is exactly Gb(vb), and at every
moment dHb (t) = dGb (ṽb (vs, t)) = gb (ṽb (vs, t))

∂ṽb(vs,t)
∂t

dt. This completes the proof
for the seller. The case of the buyer is analogous.

The optimization problem stated in Proposition 17 can be best approached as a
problem where i is choosing two unknown functions pi(vi, ·) and ṽj (vi, .) which are
bound by the constraint (13), where pj(·, ·) is a given and fixed function (the strate-
gies of all possible types of agent j). Good references for the calculus of variations
are Elsgolts [1970] and Troutman[1995].

The optimality condition at the lower boundary of optimization is given by def-
inition of tEi (vi) - implicitly written as ṽb(vs, t

E
s (vs)) = 1 or ṽs(vb, t

E
b (vb)) = 0. In

the following lemma we provide the first order condition for the optimization pro-
gram of agent i, for t > tEi (vi). To save on cumbersome notation we omit several
unambiguous arguments in the functions.
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Lemma 18. First order condition: In a regular and separating BE, strategies
pi(vi, .), i = s, b, satisfy the following first order conditions

(ps − vs) =
(

∂pb(ṽb,t)
∂ṽb

dṽb

dt
− ∂ps

∂t

)
,∀vs ∈ [0, 1] ,∀t > tEs (vs) ;

(vb − pb) = −
(

∂ps(ṽs,t)
∂ṽs

dṽs

dt
− ∂pb

∂t

)
,∀vb ∈ [0, 1] ,∀t > tEb (vb) .

(14)

Proof. We fix vi and economize the notation to write ṽj (vi, t) = ṽj and
∂ṽj(vi,t)

∂t
=
·
ṽj.

We write the Hamiltonian

Hi(t) = e−tui(pi(vi, t), vi)gj(ṽj)
·
ṽj −

−µ(t) (pj(ṽj, t)− pi(vi, t)) ,

and compute the Euler conditions for the unknown functions

∂Hi

∂ṽj

= e−tui(pi(vi, t), vi)g
′
j(ṽj)

·
ṽj −µ

∂pj(ṽj, t)

∂ṽj

,

d

dt

∂Hi

∂
·
ṽj

= e−tui(pi(vi, t), vi)g
′
j(ṽj)

·
ṽj +

+e−t ∂ui(pi(vi, t), vi)

∂p

∂pi(vi, t)

∂t
gj(ṽj) +

−e−tui(pi(vi, t), vi)gj(ṽj),

∂Hs

∂pi

= e−t ∂ui(pi(vi, t), vi)

∂p
gj(ṽj)

·
ṽj +µ,

∂Hs

∂
·
pi

= 0.

Whence we have the two Euler equations

−µ
∂pj(ṽj ,t)

∂ṽj
− e−t ∂ui(pi(vi,t),vi)

∂p
∂pi(vi,t)

∂t
gj(ṽj) + e−tui(pi(vi, t), vi)gj(ṽj) = 0,

e−t ∂ui(pi(vi,t),vi)
∂p

gj(ṽj)
·
ṽj +µ = 0.

From the second Euler equation we can eliminate µ and the density gj also dis-
appears from the first to obtain the condition

ui (pi, vi) =
∂ui (pi, vi)

∂pi

(
∂pj(ṽj, t)

∂ṽj

dṽj

dt
− ∂pi

∂t

)
,

for t ≥ tE (vi) , i = s, b.
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Lemma 18 has two important implications. The first is that a best response to a
strictly type-monotone strategy is strictly type-monotone.

Corollary 19. If pi (., .) is a best response to a regular strategy pj (., .), such that
∂pj

∂vj
> 0, then ∂pi

∂vi
> 0.

Proof. Let i = s and assume that ∂ṽb

∂t
= 0. By assumption, ∂pb(ṽb,t)

∂vb
> 0 and ∂ps

∂t
≤ 0,

so that ∂ṽb

∂t
= 0 contradicts equation (14).

The second implication of Lemma 18 is that the equilibrium strategies must be
independent of players’ beliefs. Hence the following is immediate (see for instance
Ledyard [1978]).

Corollary 20. A PBE in regular and strictly type monotone strategies must be an
ex-post equilibrium.

Combining Corollary 20 with Lemma 15 yields Theorem 12.
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[7] Čopič , J. and C. Ponsat́ı [2005]: “Robust Bilateral Trade under Risk
Aversion”, mimeo.
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